3.9.46 \(\int \frac {15 d^2+20 d e x+8 e^2 x^2}{\sqrt {a+b x} (d+e x)^{3/2}} \, dx\) [846]

3.9.46.1 Optimal result
3.9.46.2 Mathematica [A] (verified)
3.9.46.3 Rubi [A] (verified)
3.9.46.4 Maple [B] (verified)
3.9.46.5 Fricas [B] (verification not implemented)
3.9.46.6 Sympy [F]
3.9.46.7 Maxima [F(-2)]
3.9.46.8 Giac [B] (verification not implemented)
3.9.46.9 Mupad [F(-1)]

3.9.46.1 Optimal result

Integrand size = 38, antiderivative size = 108 \[ \int \frac {15 d^2+20 d e x+8 e^2 x^2}{\sqrt {a+b x} (d+e x)^{3/2}} \, dx=\frac {6 d^2 \sqrt {a+b x}}{(b d-a e) \sqrt {d+e x}}+\frac {8 \sqrt {a+b x} \sqrt {d+e x}}{b}+\frac {8 (2 b d-a e) \text {arctanh}\left (\frac {\sqrt {e} \sqrt {a+b x}}{\sqrt {b} \sqrt {d+e x}}\right )}{b^{3/2} \sqrt {e}} \]

output
8*(-a*e+2*b*d)*arctanh(e^(1/2)*(b*x+a)^(1/2)/b^(1/2)/(e*x+d)^(1/2))/b^(3/2 
)/e^(1/2)+6*d^2*(b*x+a)^(1/2)/(-a*e+b*d)/(e*x+d)^(1/2)+8*(b*x+a)^(1/2)*(e* 
x+d)^(1/2)/b
 
3.9.46.2 Mathematica [A] (verified)

Time = 0.26 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.13 \[ \int \frac {15 d^2+20 d e x+8 e^2 x^2}{\sqrt {a+b x} (d+e x)^{3/2}} \, dx=\frac {2 \left (\frac {\sqrt {b} \sqrt {a+b x} (-4 a e (d+e x)+b d (7 d+4 e x))}{\sqrt {d+e x}}+\frac {4 \left (2 b^2 d^2-3 a b d e+a^2 e^2\right ) \text {arctanh}\left (\frac {\sqrt {e} \sqrt {a+b x}}{\sqrt {b} \sqrt {d+e x}}\right )}{\sqrt {e}}\right )}{b^{3/2} (b d-a e)} \]

input
Integrate[(15*d^2 + 20*d*e*x + 8*e^2*x^2)/(Sqrt[a + b*x]*(d + e*x)^(3/2)), 
x]
 
output
(2*((Sqrt[b]*Sqrt[a + b*x]*(-4*a*e*(d + e*x) + b*d*(7*d + 4*e*x)))/Sqrt[d 
+ e*x] + (4*(2*b^2*d^2 - 3*a*b*d*e + a^2*e^2)*ArcTanh[(Sqrt[e]*Sqrt[a + b* 
x])/(Sqrt[b]*Sqrt[d + e*x])])/Sqrt[e]))/(b^(3/2)*(b*d - a*e))
 
3.9.46.3 Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.03, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.132, Rules used = {1193, 27, 90, 66, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {15 d^2+20 d e x+8 e^2 x^2}{\sqrt {a+b x} (d+e x)^{3/2}} \, dx\)

\(\Big \downarrow \) 1193

\(\displaystyle \frac {2 \int \frac {2 (b d-a e) (3 d+2 e x)}{\sqrt {a+b x} \sqrt {d+e x}}dx}{b d-a e}+\frac {6 d^2 \sqrt {a+b x}}{\sqrt {d+e x} (b d-a e)}\)

\(\Big \downarrow \) 27

\(\displaystyle 4 \int \frac {3 d+2 e x}{\sqrt {a+b x} \sqrt {d+e x}}dx+\frac {6 d^2 \sqrt {a+b x}}{\sqrt {d+e x} (b d-a e)}\)

\(\Big \downarrow \) 90

\(\displaystyle 4 \left (\frac {(2 b d-a e) \int \frac {1}{\sqrt {a+b x} \sqrt {d+e x}}dx}{b}+\frac {2 \sqrt {a+b x} \sqrt {d+e x}}{b}\right )+\frac {6 d^2 \sqrt {a+b x}}{\sqrt {d+e x} (b d-a e)}\)

\(\Big \downarrow \) 66

\(\displaystyle 4 \left (\frac {2 (2 b d-a e) \int \frac {1}{b-\frac {e (a+b x)}{d+e x}}d\frac {\sqrt {a+b x}}{\sqrt {d+e x}}}{b}+\frac {2 \sqrt {a+b x} \sqrt {d+e x}}{b}\right )+\frac {6 d^2 \sqrt {a+b x}}{\sqrt {d+e x} (b d-a e)}\)

\(\Big \downarrow \) 221

\(\displaystyle 4 \left (\frac {2 (2 b d-a e) \text {arctanh}\left (\frac {\sqrt {e} \sqrt {a+b x}}{\sqrt {b} \sqrt {d+e x}}\right )}{b^{3/2} \sqrt {e}}+\frac {2 \sqrt {a+b x} \sqrt {d+e x}}{b}\right )+\frac {6 d^2 \sqrt {a+b x}}{\sqrt {d+e x} (b d-a e)}\)

input
Int[(15*d^2 + 20*d*e*x + 8*e^2*x^2)/(Sqrt[a + b*x]*(d + e*x)^(3/2)),x]
 
output
(6*d^2*Sqrt[a + b*x])/((b*d - a*e)*Sqrt[d + e*x]) + 4*((2*Sqrt[a + b*x]*Sq 
rt[d + e*x])/b + (2*(2*b*d - a*e)*ArcTanh[(Sqrt[e]*Sqrt[a + b*x])/(Sqrt[b] 
*Sqrt[d + e*x])])/(b^(3/2)*Sqrt[e]))
 

3.9.46.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 66
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ 
2   Subst[Int[1/(b - d*x^2), x], x, Sqrt[a + b*x]/Sqrt[c + d*x]], x] /; Fre 
eQ[{a, b, c, d}, x] &&  !GtQ[c - a*(d/b), 0]
 

rule 90
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[b*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), 
 x] + Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(d*f*(n + p 
+ 2))   Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, 
p}, x] && NeQ[n + p + 2, 0]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 1193
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) 
 + (c_.)*(x_)^2)^(p_.), x_Symbol] :> With[{Qx = PolynomialQuotient[(a + b*x 
 + c*x^2)^p, d + e*x, x], R = PolynomialRemainder[(a + b*x + c*x^2)^p, d + 
e*x, x]}, Simp[R*(d + e*x)^(m + 1)*((f + g*x)^(n + 1)/((m + 1)*(e*f - d*g)) 
), x] + Simp[1/((m + 1)*(e*f - d*g))   Int[(d + e*x)^(m + 1)*(f + g*x)^n*Ex 
pandToSum[(m + 1)*(e*f - d*g)*Qx - g*R*(m + n + 2), x], x], x]] /; FreeQ[{a 
, b, c, d, e, f, g, n}, x] && IGtQ[p, 0] && ILtQ[2*m, -2] &&  !IntegerQ[n] 
&&  !(EqQ[m, -2] && EqQ[p, 1] && EqQ[2*c*d - b*e, 0])
 
3.9.46.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(437\) vs. \(2(88)=176\).

Time = 0.48 (sec) , antiderivative size = 438, normalized size of antiderivative = 4.06

method result size
default \(-\frac {2 \sqrt {b x +a}\, \left (2 \ln \left (\frac {2 b e x +2 \sqrt {\left (b x +a \right ) \left (e x +d \right )}\, \sqrt {b e}+a e +b d}{2 \sqrt {b e}}\right ) a^{2} e^{3} x -6 \ln \left (\frac {2 b e x +2 \sqrt {\left (b x +a \right ) \left (e x +d \right )}\, \sqrt {b e}+a e +b d}{2 \sqrt {b e}}\right ) a b d \,e^{2} x +4 \ln \left (\frac {2 b e x +2 \sqrt {\left (b x +a \right ) \left (e x +d \right )}\, \sqrt {b e}+a e +b d}{2 \sqrt {b e}}\right ) b^{2} d^{2} e x +2 \ln \left (\frac {2 b e x +2 \sqrt {\left (b x +a \right ) \left (e x +d \right )}\, \sqrt {b e}+a e +b d}{2 \sqrt {b e}}\right ) a^{2} d \,e^{2}-6 \ln \left (\frac {2 b e x +2 \sqrt {\left (b x +a \right ) \left (e x +d \right )}\, \sqrt {b e}+a e +b d}{2 \sqrt {b e}}\right ) a b \,d^{2} e +4 \ln \left (\frac {2 b e x +2 \sqrt {\left (b x +a \right ) \left (e x +d \right )}\, \sqrt {b e}+a e +b d}{2 \sqrt {b e}}\right ) b^{2} d^{3}-4 a \,e^{2} x \sqrt {\left (b x +a \right ) \left (e x +d \right )}\, \sqrt {b e}+4 b d e x \sqrt {\left (b x +a \right ) \left (e x +d \right )}\, \sqrt {b e}-4 a d e \sqrt {\left (b x +a \right ) \left (e x +d \right )}\, \sqrt {b e}+7 b \,d^{2} \sqrt {\left (b x +a \right ) \left (e x +d \right )}\, \sqrt {b e}\right )}{b \sqrt {b e}\, \left (a e -b d \right ) \sqrt {\left (b x +a \right ) \left (e x +d \right )}\, \sqrt {e x +d}}\) \(438\)

input
int((8*e^2*x^2+20*d*e*x+15*d^2)/(e*x+d)^(3/2)/(b*x+a)^(1/2),x,method=_RETU 
RNVERBOSE)
 
output
-2*(b*x+a)^(1/2)*(2*ln(1/2*(2*b*e*x+2*((b*x+a)*(e*x+d))^(1/2)*(b*e)^(1/2)+ 
a*e+b*d)/(b*e)^(1/2))*a^2*e^3*x-6*ln(1/2*(2*b*e*x+2*((b*x+a)*(e*x+d))^(1/2 
)*(b*e)^(1/2)+a*e+b*d)/(b*e)^(1/2))*a*b*d*e^2*x+4*ln(1/2*(2*b*e*x+2*((b*x+ 
a)*(e*x+d))^(1/2)*(b*e)^(1/2)+a*e+b*d)/(b*e)^(1/2))*b^2*d^2*e*x+2*ln(1/2*( 
2*b*e*x+2*((b*x+a)*(e*x+d))^(1/2)*(b*e)^(1/2)+a*e+b*d)/(b*e)^(1/2))*a^2*d* 
e^2-6*ln(1/2*(2*b*e*x+2*((b*x+a)*(e*x+d))^(1/2)*(b*e)^(1/2)+a*e+b*d)/(b*e) 
^(1/2))*a*b*d^2*e+4*ln(1/2*(2*b*e*x+2*((b*x+a)*(e*x+d))^(1/2)*(b*e)^(1/2)+ 
a*e+b*d)/(b*e)^(1/2))*b^2*d^3-4*a*e^2*x*((b*x+a)*(e*x+d))^(1/2)*(b*e)^(1/2 
)+4*b*d*e*x*((b*x+a)*(e*x+d))^(1/2)*(b*e)^(1/2)-4*a*d*e*((b*x+a)*(e*x+d))^ 
(1/2)*(b*e)^(1/2)+7*b*d^2*((b*x+a)*(e*x+d))^(1/2)*(b*e)^(1/2))/b/(b*e)^(1/ 
2)/(a*e-b*d)/((b*x+a)*(e*x+d))^(1/2)/(e*x+d)^(1/2)
 
3.9.46.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 225 vs. \(2 (88) = 176\).

Time = 0.39 (sec) , antiderivative size = 463, normalized size of antiderivative = 4.29 \[ \int \frac {15 d^2+20 d e x+8 e^2 x^2}{\sqrt {a+b x} (d+e x)^{3/2}} \, dx=\left [-\frac {2 \, {\left ({\left (2 \, b^{2} d^{3} - 3 \, a b d^{2} e + a^{2} d e^{2} + {\left (2 \, b^{2} d^{2} e - 3 \, a b d e^{2} + a^{2} e^{3}\right )} x\right )} \sqrt {b e} \log \left (8 \, b^{2} e^{2} x^{2} + b^{2} d^{2} + 6 \, a b d e + a^{2} e^{2} - 4 \, {\left (2 \, b e x + b d + a e\right )} \sqrt {b e} \sqrt {b x + a} \sqrt {e x + d} + 8 \, {\left (b^{2} d e + a b e^{2}\right )} x\right ) - {\left (7 \, b^{2} d^{2} e - 4 \, a b d e^{2} + 4 \, {\left (b^{2} d e^{2} - a b e^{3}\right )} x\right )} \sqrt {b x + a} \sqrt {e x + d}\right )}}{b^{3} d^{2} e - a b^{2} d e^{2} + {\left (b^{3} d e^{2} - a b^{2} e^{3}\right )} x}, -\frac {2 \, {\left (2 \, {\left (2 \, b^{2} d^{3} - 3 \, a b d^{2} e + a^{2} d e^{2} + {\left (2 \, b^{2} d^{2} e - 3 \, a b d e^{2} + a^{2} e^{3}\right )} x\right )} \sqrt {-b e} \arctan \left (\frac {{\left (2 \, b e x + b d + a e\right )} \sqrt {-b e} \sqrt {b x + a} \sqrt {e x + d}}{2 \, {\left (b^{2} e^{2} x^{2} + a b d e + {\left (b^{2} d e + a b e^{2}\right )} x\right )}}\right ) - {\left (7 \, b^{2} d^{2} e - 4 \, a b d e^{2} + 4 \, {\left (b^{2} d e^{2} - a b e^{3}\right )} x\right )} \sqrt {b x + a} \sqrt {e x + d}\right )}}{b^{3} d^{2} e - a b^{2} d e^{2} + {\left (b^{3} d e^{2} - a b^{2} e^{3}\right )} x}\right ] \]

input
integrate((8*e^2*x^2+20*d*e*x+15*d^2)/(e*x+d)^(3/2)/(b*x+a)^(1/2),x, algor 
ithm="fricas")
 
output
[-2*((2*b^2*d^3 - 3*a*b*d^2*e + a^2*d*e^2 + (2*b^2*d^2*e - 3*a*b*d*e^2 + a 
^2*e^3)*x)*sqrt(b*e)*log(8*b^2*e^2*x^2 + b^2*d^2 + 6*a*b*d*e + a^2*e^2 - 4 
*(2*b*e*x + b*d + a*e)*sqrt(b*e)*sqrt(b*x + a)*sqrt(e*x + d) + 8*(b^2*d*e 
+ a*b*e^2)*x) - (7*b^2*d^2*e - 4*a*b*d*e^2 + 4*(b^2*d*e^2 - a*b*e^3)*x)*sq 
rt(b*x + a)*sqrt(e*x + d))/(b^3*d^2*e - a*b^2*d*e^2 + (b^3*d*e^2 - a*b^2*e 
^3)*x), -2*(2*(2*b^2*d^3 - 3*a*b*d^2*e + a^2*d*e^2 + (2*b^2*d^2*e - 3*a*b* 
d*e^2 + a^2*e^3)*x)*sqrt(-b*e)*arctan(1/2*(2*b*e*x + b*d + a*e)*sqrt(-b*e) 
*sqrt(b*x + a)*sqrt(e*x + d)/(b^2*e^2*x^2 + a*b*d*e + (b^2*d*e + a*b*e^2)* 
x)) - (7*b^2*d^2*e - 4*a*b*d*e^2 + 4*(b^2*d*e^2 - a*b*e^3)*x)*sqrt(b*x + a 
)*sqrt(e*x + d))/(b^3*d^2*e - a*b^2*d*e^2 + (b^3*d*e^2 - a*b^2*e^3)*x)]
 
3.9.46.6 Sympy [F]

\[ \int \frac {15 d^2+20 d e x+8 e^2 x^2}{\sqrt {a+b x} (d+e x)^{3/2}} \, dx=\int \frac {15 d^{2} + 20 d e x + 8 e^{2} x^{2}}{\sqrt {a + b x} \left (d + e x\right )^{\frac {3}{2}}}\, dx \]

input
integrate((8*e**2*x**2+20*d*e*x+15*d**2)/(e*x+d)**(3/2)/(b*x+a)**(1/2),x)
 
output
Integral((15*d**2 + 20*d*e*x + 8*e**2*x**2)/(sqrt(a + b*x)*(d + e*x)**(3/2 
)), x)
 
3.9.46.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {15 d^2+20 d e x+8 e^2 x^2}{\sqrt {a+b x} (d+e x)^{3/2}} \, dx=\text {Exception raised: ValueError} \]

input
integrate((8*e^2*x^2+20*d*e*x+15*d^2)/(e*x+d)^(3/2)/(b*x+a)^(1/2),x, algor 
ithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.9.46.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 197 vs. \(2 (88) = 176\).

Time = 0.32 (sec) , antiderivative size = 197, normalized size of antiderivative = 1.82 \[ \int \frac {15 d^2+20 d e x+8 e^2 x^2}{\sqrt {a+b x} (d+e x)^{3/2}} \, dx=\frac {2 \, \sqrt {b x + a} {\left (\frac {4 \, {\left (b^{3} d e^{3} - a b^{2} e^{4}\right )} {\left (b x + a\right )}}{b^{3} d e^{2} {\left | b \right |} - a b^{2} e^{3} {\left | b \right |}} + \frac {7 \, b^{4} d^{2} e^{2} - 8 \, a b^{3} d e^{3} + 4 \, a^{2} b^{2} e^{4}}{b^{3} d e^{2} {\left | b \right |} - a b^{2} e^{3} {\left | b \right |}}\right )}}{\sqrt {b^{2} d + {\left (b x + a\right )} b e - a b e}} - \frac {8 \, {\left (2 \, b d - a e\right )} \log \left ({\left | -\sqrt {b e} \sqrt {b x + a} + \sqrt {b^{2} d + {\left (b x + a\right )} b e - a b e} \right |}\right )}{\sqrt {b e} {\left | b \right |}} \]

input
integrate((8*e^2*x^2+20*d*e*x+15*d^2)/(e*x+d)^(3/2)/(b*x+a)^(1/2),x, algor 
ithm="giac")
 
output
2*sqrt(b*x + a)*(4*(b^3*d*e^3 - a*b^2*e^4)*(b*x + a)/(b^3*d*e^2*abs(b) - a 
*b^2*e^3*abs(b)) + (7*b^4*d^2*e^2 - 8*a*b^3*d*e^3 + 4*a^2*b^2*e^4)/(b^3*d* 
e^2*abs(b) - a*b^2*e^3*abs(b)))/sqrt(b^2*d + (b*x + a)*b*e - a*b*e) - 8*(2 
*b*d - a*e)*log(abs(-sqrt(b*e)*sqrt(b*x + a) + sqrt(b^2*d + (b*x + a)*b*e 
- a*b*e)))/(sqrt(b*e)*abs(b))
 
3.9.46.9 Mupad [F(-1)]

Timed out. \[ \int \frac {15 d^2+20 d e x+8 e^2 x^2}{\sqrt {a+b x} (d+e x)^{3/2}} \, dx=\int \frac {15\,d^2+20\,d\,e\,x+8\,e^2\,x^2}{\sqrt {a+b\,x}\,{\left (d+e\,x\right )}^{3/2}} \,d x \]

input
int((15*d^2 + 8*e^2*x^2 + 20*d*e*x)/((a + b*x)^(1/2)*(d + e*x)^(3/2)),x)
 
output
int((15*d^2 + 8*e^2*x^2 + 20*d*e*x)/((a + b*x)^(1/2)*(d + e*x)^(3/2)), x)